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Excitation Spectrum in Singlet-Triplet Ferromagnetic Systems*
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The dynamic properties of a single-triplet ferromagnetic system are studied
by the method of double-time Greenís functions. Utilizing the standard basis
operator formalism to describe the singlet-triplet levels, a Dyson equation for the
single-particle Greenís function is obtained. This equation describes the magnetic
excitations in the system for low temperatures. AS an application, the self-energy
is calculated approximately to yield the damping of the excitations at zero tem-
perature.

I. INTRODUCTION

II
N recent years there has been considerable interest in magnetic systems in which the single-ion

crystal field ground state is a singlet. In such systems, if the exchange interaction is strong enough,
magnetic ordering at low temperature occurs through a polarization process. A review of this subject
has been given by Fulde and Peschelî). The magnetic excitations in such systems are believed to be
single-ion crystal field transitions propagating through the crystal by virtue of the exchange coupling.
Of particular interest is the singlet-triplet system where the first excited state is a triplet. The
spherical symmetry of the singlet-triplet system can be explored to derive an exact hydrodynamic
theory for the long wavelength excitations. This has been done by Hohenberg and Swift(2), by
Cheungc3,ë) and by Huberc5). On the other hand, microscopic calculations for such systems have not
been very successful. Because of the calculational difficulties associated with crystal field effects, past
studies have been confined to the random phase approximation (RPA). For example, Hsieh and
Blume(*)  have calculated the excitation spectrum for the singlet-triplet system and systems with more
complicated level schemes have been studied by Peschel et al.(ë)  and by Holden  and Buyers(B).

In this paper we develop a theory for the low temperature dynamic properties of the singlet-
triplet ferromagnetic system. In order to gain a better understanding of the transitions between
the various energy levels, we utilize the standard basis operator formalism introduced by Haley and
Erd6s(B). This is different from previous treatments which represent the levels by pseudo-spin
operators. The low lying excitations in the system are then studied by the double time Greenís

function method(~O~ì).  The equations of motion are written in the form of a Dyson equation for the
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Greenís functions. As an application, we calculate the lifetime of the excitations at zero temperature.
In Sec. II we introduce the standard basis operators and express the Hamiltonian in terms of

them. In the ferromagnetic state, the presence of the molecular field mixes the singlet-triplet levels.
The molecular field levels are obtained by diagonalizing the ìmolecular field Hamiltonianî and we
take them as our new basis states. In Sec. III a Dyson equation for the single-particle Greenís func-
tion which describes the low lying excitations at low temperatures is derived. In Sec. IV we show
that the simplest approximation for the self energy reproduced the RPi\ rest& obtained previously by
other methods. In Sec. V we calculate approximately the contribution of the two-particle Greenís

functions to the self energy, which leads to damping of the excitation.

II. MAMILTONIAN

The Hamiltonian for the singlet-triplet system is taken to be of the form

g=F Vie-C 4ij J’  l Jj. (2. 1)
i,i

Here yic is the crystal field Hamiltonian associated with the ith ion and gives rise to a splitting A
between the singlet and the triplet. &lij is the exchange interaction coupling ions i and i, Ji is the
angular momentum of the ith ion. We denote the ground singlet by 1 I> and the excited triplet by

1 2>, 1 3), 1 4). The matrix elements of J, between the levels are(ì)

J,,,=<2 ( Jz I I>=6

J233=<3  I Jz I 3>=B, (2.2)

J ,,,-(4 I Jz I4>= -P,

with similar expressions for J+ and J_.
The standard basis operator ii, associated with the LX and p levels of yic is interpreted as taking

the ith ion from level a to level CL These operators obey the commutation relation

[i::l.z, ij,?] = fY(S.., ir,.- 6.,. Lg.

The operator i,, measures the probability that the energy level a: is occupied.
will be denoted by D, and satisfies the obvious sum rule

r, D,=l.
(I

We note that any operator can be represented as a linear combination
operators by the formula

(2.3)

Its ensemble average

(2.4)

of the standard basis

(2.5)

Using the matrix elements of J between the singlet-triplet levels, we express the angular momentum
operator in terms of the standard basis operators

J:=r/Ta(Z:,-i:,)+J_2_P(Z:,+i:,), (2.6)
J!. =/3-c@:, -i;,) + Jr2 a&:, +I&).

The Hamiltonian now takes the general form

(2.7)

where e,=O, eZ=es=e,=A  and I$,aa,  is given by

Cl..,  P$ë== Bî(Jz..~  J,,,.+ -l2-- J,... J-p,.++ J_... J,,,.) (2. 8)

In the ferromagnetic state, each ion is subjected to a field which is generated by the remaining
ions. This field which is referred to as the molecular field points in the z direction and mixes the
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singlet-triplet levels due to nonzero  matxix elements of J, between them. To investigate this effect
we introduce new basis states

I lí)=u,  j I)fU, 1%

/2í>=u,  I I>+% / 2>,

in terms of which the angular momentum operators are

J:=ru(u,v,+u,V,)  (i:.,.+~i:.,.)-2cru,v,  i:.,.-2rrlc,v,  i:.,.+p&ii,),

J:=//2[(!3u,-W) i:,,+(8u,+atu,) i:,.-(i3u,-atzJ,)  e:.,-(/3rJ,+cxzJ,,  i!,,],

J!. -/~[(P,l-LW1)  ~:,~+(Bu,+~:v,)  i:., -(Bu, -09,) i:,.-(Bu,+av,)  i:,,],

and the Hamiltonian takes the form

(2.9)

(2. 10)

LZ’  = z e, J% - jg, L i!.,- X C Ial... pp. I%,. I&.,
i.ml j,fl,Et

(2. 11)

where from now on we sha!l drop the primes indicating the new states. The coupling constants are
rather complicated and are given in the appendix.

The ìmolecular field Hamiltonian” is obtained from (2. 11) by replacing ii,. in the third term
on the right hand side by its thermal average 6,,,D,

&F= X+&X, Lib,.- L’ Lib.,,i...!
(2. 12)

where

C... = 2 r, I:!.,  rr Q,
j.r

= 2 X I:_., rr 0,. (2. 13)

t*., rr’ denotes the Fourier transform in space of Zl!.,,,,. After some algebra, we find that the ìmole-
cular field Hamiltonianî can be diagonalized by the following choices of ui and zli

- C Ei
ëia  /gscim’  vi= d/B: i=l, 2 (2. 14)

with

El=-;-  (A-/Ae+4C2), (2. 15)

E,=-;- (A+,/Ae+4C2), (2. 16)

and

C=2a4(O)M. (2. 17)

8(k) is the Fourier transform in space of $ij. The magnetization M is the nonzero  thermal average
of the z component of the angular momentum operator and is given implicitly by the equation

(2. 18)

In the above formula Dma denotes Da--D,. The molecular field levels are El, Ez, E, = A-d and
E,=A+d  with d-2/?J(O)M respectively.

Finally, the Hamiltonian in the new representation takes the form

with the understanding that the ìmolecular fieldî term has been subtracted from the second term on
the right hand side.

The molecular field ground state depends on which energy level is lowest at zero temperature.
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If ES is lowest we have the case of fully magnetized ground state with magnetization M-b. On the
other hand if E, is lowest the magnetization is not saturated but given by

M= [1~4YO) - gl” .
4aJ(O)

(2.20)

which situation actually occurs depends on the choice of parameters a, a, J(O) and A. We refer to
the paper of Hsieh and Blume(ì)  for a detailed discussion. In the following we will be mainly in_
terested in the case of unsaturated magnetic ground state. The other case will be commented on
briefly.

III. EQUATIONS OF MOTION OF GREENíS  FUNCTIONS

In this section we apply the method of double time Greenís functions to the system. For arbitrary
operators A and B, the retarded Greenís function is defined by

GdB(f-fí)=<@(t)  1 B(C)))=  -i&t-tí)  <[A(t),  B(rí)l). (3. 1)

Its temporal Fourier transform

GAB(w)=@  1 I%,=J_l dt eiWo-ì)  ((A(t)  1 B(tí))), (3.2)

satisfies the equation of motion

wG~W)=(CA,  BI)+((C4 %I I f%o. (3.3)

For the case we are considering E, is the lowest level and is predominately occupied at very
low temperatures. An examination of (2. 6) shows the transverse magnetic excitations at low tem-

peratures are chiefly due to transitions between E, and E, and between E, and E,. Accordingly we
introduce a column vector

,&=
i:,

( )L:, ’
(3.4)

and its conjugate row vector

AL+= (2~~ i,ë), (3.5)

where k is the momentum vector in reciprocal space and .L:,=l//Xxi if, emZr.ëi,  etc. The Greenís

function to be studied form a 2x 2 matrix which is represented symbolically as

(3.6)

The equations of motion of the Greenís functions are determined by the commutator of the
operators i:, and ,!$ with the Hamiltonian. Using the commutation relation (2. 3) we obtain

where

The thermal average of the commutator [Ak,  Ak+] is simply

Q-(Dd3 ;*,)* (3. 11)

.,, ij~ , .._
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The equation of motion of the Greenís function can now be written as

w+d- A 1
2 - 2 ,/ëAz+4C2

Q-’
0

0
\

Aw+d+ 2 + ;
@(k, w)=1+3& ~9, (3. 12)

r/A” + 4c2

where Z is the unit matrix and Q-t is the matrix inverse to Q. 3(k, w) is a higher-order 2x2
Greenís function

(3. 13)

If the term 3(k, w) is neglected completely, (3. 12) can be inverted to obtain

E+d--$m- ; /A2+4c2
@o(k,  w)=

0

ëj
0

I

Dal _~_ _ _ _ _  i
(3. 14)

E+d+
A-. 1
2 +m2-  Jn2+4czi

which  is just the molecular field result.
In order to go beyond the molecular field approximation an equation of motion for the higher

order  Greenís function 3(k, w) must be obtained. To do this we take the commutator of the second
argument of 3(k, w) with the Hamiltonian. We obtain

3(k w) $;ë(k  w> =P(k WI,
where the polarization operator on the

P(k, w) =P,(k)  +Pt(k, w),

the first term is independent of w and

right hand side is the sum of two terms

is given by

P,(k) = Q-l
<[F:, kl) <[F:, kkl >
<CC, kíl> <[F;, iikl) Q-”

The second term is a still higher-order Greenís function,

Combining (3. 15) with the equation of motion for the one-particle Greenís function

Q;ë(k,  w) &J(k, w)=I+  3(k 4,
gives

@(k,  w) =&(k,  w) + &(k, w) P(k, w) $o(k, w).

If we introduce a self-energy operator defined by

x (k,  w) =P(k,  w) l_Z+ Q,(k, w) W, w)l-ë,

then a Dyson equation for the single-particle Greenís function

[@;ë(k,  w) -C (k, 41 (I@, 4 =I,

is obtained. Our problem is now to calculate the self-energy operator x (k, w).

IV. RANDOM PHASE APPROXIMATION

(3. 15)

(3. 16)

(3. 17)

(3. 18)

(3. 12í)

(3. 19)

(3.20)

(3.21)

The simplest approximation is to consider the term P,(k) only as it is independent of frequency.
We further approximate the self-energy by
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c and d in the above formulas are evaluated at absolute zero.
It is interesting to examine the behaviour of the poles at small k . For a crystal of cubic sym_

metry,  the following relation holds near k=O

&k)=&0)(1-~k2&..), (4. 15)

71 depends on the geometry of the crystal and 0” is the lattice constant. Using the above expression
we fcund a linear spectrum for small k

R,,,(k)= */?a[ ( l+$)Ap+ ; &Z(O) LYE- 16~r~(~~-a~)  ~z(0)]lízk  +O(k2). (4. 16)

We note that one of the poles is positive and the other is negative indicating that the higher levels
are populated even at absolute zero. This shows that RPA is inconsistent and has to do with the
molecular field ground state being not the true ground state of the systemí2>a).

Another branch of the magnetic excitations which involves transitions from the lowest level is
the longitudinal excitations which are the poles of the Greenís function (& / J?;ë)),.  Similar con-
siderations give the following for the Greenís function at absolute zero

1 AZ 4(k)
w1-4cQ(0)+-.*- &J(O) J(O)

((it, 1 i,y),= --~
w2- 160~’  gz(O)+  A2 ë$;

(4. 17)

The longitudinal excitations have a gap at zero momentum.
To calcu!ate  the spectrum at finite temperatures, we have to know the occupation of the levels.

This can be obtained from the Greenís functions using the formulac8)

Da=& i:,>=&,>, (4. 18)

and the spectrum can be determined numerically by iteration.

V. DAMPING OF THE EXCITATIONS

In this section, w-e consider the effect of the frequency dependent contribution to the polarization
operator on the excitation spectrum. P,(k, w) has a branch cut along the real axis. As such, it
contributes an imaginary as well as a real part to the single-particle Greenís function. Both parts
are second order in the interaction. We shall be interested only in the imaginary part as it is the
leading order contribution to the damping.

It is a rather formidable task to calculate the two-partic!e Greenís functions involved in P,(k, w).
We shall make the simplest approximation by decoupling the two-particle Greenís functions into
products of single-particle Greenís functions. For example, we decouple in the following manner

<i&(t) i:,(t) i::&ë)  i::,.>=&(f) i&(tí))  <i:,(C) L$(fl)>

+<i$(.,(t ) i::,.(tJ)> <i:,(t)  i&Qí)> (5. I)

We shall further neglect correlation functions like (i:,(t) i/,(tl)>, (i:,(t) i{,(tí)>  and (i:,(t) il,(tl)) as
well as nondiagonal ones as they are small compared with those we keep. An examination of the
coupling constants unables us to obtain

(Q?(t) ( F:+(q))  = - w - r%4r, (I:,, ,,-I:,. II) (I:,, II- I:,. ,*+z:~:,)<i:;ë(t)i,kCl(fI))<i:,(f)  i,ë(Q

+4X1,4,  ,,(z:; ,,+z:;;:,-z:,T:*)<i:;ë(i)i,ë+ë(tí)>Q:,(t)  i,Yt9>), (5.2)
, i.

and

((M) I~:+(~ë))~=~~(~-~ë){4~(~:,,*,-~:ë,,,)(~:,,*,-~:,,,, -z:l:,) (i;ìë(tí)i:;q(t))  (i:$ë)  i,(@)>

- 42 z:,, ,I (;:I;:, -z:;:, -z:,. ,I) <i,Yfí)  &)>&Yf9 i:;Y0%. (5. 3)
P

h MI/k.
,._._
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The off-diagonal elements of Pt(k, W) can be neglected as their contribution to the damping is of
higher order.

To evaluate the above Greenís functions, we introduce the following spectral functions

and

J.,(q, w) = ----,,Z _ 1 (5. 5)

a-2, 3, 4 and e-knT  with kB the Boltzmann constant. In terms of the spectral functions, the cor-
relation functions are

(.Q&) &I)>=  JYW $- J,.(q, w) Pí@  Cíìììì, (5.6)

and

<,L+*(~/) fit(t))= J-1 -d$ J.,(q, w) e++~ë). (5.7)

Employing (5. 6) and (5.7), we obtain

, J-$J+!!! J,,(k-q,  wí) J,,(q, wî) eí+mîëe  6(w- wí-  wî)

+CG.,I(I:I.,l+I:;;:l-I:,r:*)
I

. J.-h& J!$ J,,(k-q,  wí)  J,,(q, w/f)  ewí+rî/e  G(w-wf-wíf)  ,
1

(5. 8)

. J&ë&J+!; J,,(k-q, wí) J,,(q,  wî) G(w-wí-wî)

+z It. ,,(I:,, a,-m +I:;;:,)

l j
dw’ dw”_-
2tr J - 2n-  J,,(q,  wí) J,,(k-q,  wî) 6(w- wí-  wî)

> . (5.9)

At absolute zero the first expression is nonzero  only for w>O while the second is nonzero  only for
w<O. Since the spectrum of &, (k)),  and ((k, 1 k,k)tl) contains a gap, the delta functions in the
above formulas are satisfied only for large values of k. Using these expressions in (3.21), the damping
of the positive pole is proportional to (5. 8) and is finite only for R,(k)>[168e(0)~4-h2]ì2  while the
damping of the negative pole is proportional to (5.9) and is finite only for ( R,(k) [ >[1642(0)a4-  ~3~]ì~.

VI. CONCLUSION

We have studied the singlet-triplet ferromagnetic system using double-time Greenís functions
through a Dyson equation approach. The imaginary part of the self energy to second order in the
interaction is calculated approximately to obtain the damping of the excitations. The damping turns
out to be zero for small values of k. This is somewhat in agreement with the hydrodynamic theory
which predicts a damping proportional to kz(ë). Of course, at zero temperature, hydrodynamic region
ceases to exist.

For the case where the magnetic ground state is saturated, similar calculations can be carried
out. However, one of the low lying excitations shows a gap and the other has a quadratic spectrum.

ë-..  Y.,.C..
,
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APPENDIX
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